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LETTER TO THE EDITOR 
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Abstract. We consider the damped sine-Gordon equation perturbed by (thermal) space- 
time noise in the form it arises in the theory of the Josephson junction and charge density 
waves. We announce a rigorous proof that the coupling constant expansion of the solution 
of the initial value problem converges for small coupling. Taking the limit of the initial 
time Io+-- we obtain a stationary solution. We show that the stationary solution is 
localized both in time and space even if the solution at finite time is not. 

The sine-Gordon equation with a random perturbation has generated a lot of interest 
recently as a successful description of solid state phenomena [l-51. The equation 
discussed has the form 

- Ac, +p2a:c, + A  sin ac, + m’q = Pg (1) 

{ g ( t , x ) g ( t ’ , x ’ ) } = s ( t - t ’ ) s ( x - x ’ )  (2) 

where g is the spacetime white noise (with t, t‘ E W, x ,  x ‘  E Rd) 

(( } meaning expectation). p’,mz20 and a, A E W  are parameters, Q, P certain 
operators. 

In the Josephson junction d =  1 and Qa@ is a dissipation assumed in [l] to be of 
the form Aa@. The term m’c, is absent in [l] (it would violate the invariance 
c,+c,+(;?nla)n) but we keep it here as a regularization. In the theory of charge 
density waves [3]-[6] p’a: is the Newton inertia [4] (p is the mass of the charged 
particles). It is usually neglected as the experiments are in good agreement with the 
assumptionp = 0[4], Q = constant and m = 0 in accordance with the interpretation of c, 
as a phase. The operator P i n  (1) is usually taken to be equal to 1. However, we keep 
it different from 1 as a regularization of the noise and we shall discuss later whether we 
may let P converge to 1 or not. If Q or Pa re  not constants the relativistic invariance is 
violated. 

Our study of (1) is at an early stage, especially concerning such non-perturbative 
phenomena as turbulent conductivity in charge density waves [4] and soliton propaga- 
tion in the Josephson junction. We give, however, a rigorous formulation of (1) and 
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show the existence of an equilibrium state, We prove the existence of the solution of 
(1) as a stationary Markov process. We show that the correlation functions of the 
stationary solution are exponentially decaying both in time and space even if the 
solution at finite times has long-range correlations. This can be seen as a justification 
of the 1-site approximation used in [4]. 

We formulate (1) in the framework of a Hilbert space valued stochastic process (a 
forthcoming paper will discuss two-parameter random fields solving (1)). 

Let t9=(q/n) then (1) can be expressed in the form 

d d =  iA6 dt + I(&) dt+ P dW (3) 

where 

If p = 0 then we write (1) in the form 

Q d q =  (A -m2)q  dt+ 1 sin(aq) df + PdW. (5 )  

A is a self-adjoint operator in the Hilbert space of integrable functions with the inner 
product (6,W) = (wq, w q ‘ )  + (n, n ‘ )  171. We transform (1) into an integral equation 

d,= exp[iA(t - t0)]t90+ exp[i( t  - r)]l(d,)  dr + exp[iA(t - r)] P dW 

(6) 
I 

where 

and 

cos to w-’ sin tw 
-w sin tw cos EW 

with w =(-A + m’)”*. The integral form of (5) reads (we set here Q = 1) 

pl,= exp[(A - m’) (t- t,)]q,+ 

exp(iBt) = 

exp((A - m’) (t- z)]L sin aq, dr I’, 
[exp(l-z)(A -m2)]PdW,. (9) 
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We shall investigate here only weak solutions of (6) and (9) in the form of a 
perturbation series in A ,  i.e. we ask the question whether the perturbation series in 
powers of 1 converges. 

The first-order approximation to (6)  is 

y ,  = U-' sin ~ ( t -  z) exp[-Q(l- r)]P dW, (10) II 
whereas the first-order approximation to (9) is 

@,=Io exp[(t - z) (A - m')]P dW,. 

M = iw - Qlp. 
Let us denote 

In terms of M the correlation function of Y reads 

E 8 [ l y ~ x ) ~ , , ( x ' ) ]  = -(&)'r dz{exp M ( t + f '  -2) + exp M*( t+  t' -2z) 
c 

- exp(Mt - Ma + M *t' - M * T )  - exp(Mt' - M7 + M *f - M *z)}. (12) 

The expansion in A of the solution of (3) is somewhat involved, if we would like to 
do it directly, because consecutive approximations enter the argument of sin aq. A 
better way is supplied by the Cameron-Martin-Girsanov-Maruyama formula from 
the theory of stochastic equations [8]. 

The theorem says the following: Assume P i s  invertible with the inverse P-' ,  let q, 
be the solution of (3) and y be the first-order approximation (lo), then for any regular 
integrable F (depending on qx, tst) 

('w) = ( P X W ( @ D ) )  (13) 
where 

pi&) =exp(l[ sin ap,P-'dW,- - (P- '  sin a&)'dz ] . (14) 

In (13) and (14) y is a functional of W. So, the expectation value on the KHS is with 
respect to the Wiener measure. p' fulfills the stochastic equation 

8 3: 
dp'=p'A sin ayrP-' dW,. (15) 

Equation (15) can be solved by iteration, what leads to the expansion in 1 of p and 
of the expectation values (13) 

The same formula applies to the parabolic equation (9). So 

(F(qN = (P;o(@)F(@N. (17) 
The only difference in (13) and (17) is in the dependence of @ and @ on W (compare 
(IO) and (ll), respectively). This similarity permits their simultaneous treatment and 
has as a consequence some similarity of the behaviour of their solutions. 
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There are usually two problems intrinsically connected with stochastic differential 
equations in spacetime, which in the language of a field theorist can be called the 
infrared and ultraviolet problems (or large distance and short distance behaviour, 
respectively). 

The first concerns the behaviour for large t and x; the second the behaviour for 
nearly coinciding arguments of time and space. This behaviour depends on the 
arbitrary operators (or numbers) P, Q, which we inserted into the equations and 
which must be discussed now. 

First, we wish to consider the limit to+ --CO, which is necessary if we wish to derive 
a solution which does not depend on the initial condition. This is justified from the 
physical point of view if we are interested in phenomena in materials a long time after 
the prepartaion of the experiment. The correlations observed should not depend on 
the initial time the experiment starts. 

Let us consider first the limit t p  - m. We obtain from (12) 

lim E, [~p~(x )~p: (x ' ) ]  =+Pw-*P{M-' exp(M1t- t '  I) + M"-' exp(M*lt -1'1) 
,e-- 

-2(hf+hf*)-'(exp(.bf*Ir- t ' l )  + exp(M]/' - rl))) (x, x ' ) .  (18) 

The RHS of (18) is the kernel of the operator 

(19) 

For @ (equation (11)) we obtain 

lim E,J@,(x)@,.(x')] = [exp - (m2-  A)/ / -  t ' I]P(m'- A)-'@, x ' ) .  (20) 
e-- 

We can see in (19) that the dissipation increases the correlation length. Namely, 
wz+wz+ Q2/$ in the denominator of (19). As a result 

Q E-=[~p~(x)v , , (x ' ) ]  s constant exp - - ( I f  - ('1 + lx-xl) 
P 

for large times or distances, uniformly in m. This is true only for the stationary 
solution. It can be seen from (12) that E d t ) ~ x ) ~ , , ( x ' ) ]  has a slow (power-like) decay if 
m=O. 

From (19) and (20) we can see whether we can go on with the expansion in 2. in 
order to get a non-trivial (weak) solution of (1). First of all we need the correlation 
functions of sin ap, to be integrable functions (after possible renormalizations). We 
have 

(exp(iaGt(x)) exp(- ia@,,(x'))) = exp - @,,(x'))') . 1 
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Assuming that we remove (@:) by ‘normal or Wick ordering’ (see the discussion 
preceding (26)) the requirement of integrability in (16) and (17) gives rise to a 
restriction on the allowed singularity (x, x’  E Rd) 

in the parabolic case ,U = 0. 
The hyperbolic casep#O is more involved because the singularities may lie on the 

light cone (this can be prevented if the dissipation is strong enough to effectively 
prohibit wave propagation.) The condition 

a’ 
- 2 ( p ~ ~ ) p ~ , ( ~ f ) ) ( l l ~ l ~ - ~ ’ l l  + 11nl~-~‘Il (22) 

is sufficient for integrability of the correlation functions of sin ap, in the first-order 
approximation. 

From (20) we now get (p’ is the symbol of -A, i.e. the representation of -A in 
Fourier transformed space) 

P2(pz)p-2sconstant p-d  (23) 
for the parabolic case. 

The hyperbolic case (discussed for Q = O ,  P = l ,  d = l  in [9, 101) is again more 
involved, because of the interplay between x and t singularities. In order to ensure 
integrability at f = I’ we need 

and (24) 

If Q2(p2)  does not grow faster than p2  for large p then the singularity in time is of the 
same form as the singularity in space. If Q grows faster than p 2  then the singularity in 
time can be weaker than in space. The singularity of the correlation function (v&.) is 
no longer on the light cone. This corresponds to the case of strong damping making 
the wave equation model similar to the parabolic case. In fact, in such a case we may 
neglect w ,  i.e. cos o(f - t’) = 1, sin w(t- t‘) EO and the two-point function (19) 
becomes similar to the parabolic one (20) depending on the relation between P and Q. 
Concerning the parabolic case for d = 1 or the Linear case for d >  1 (11,121. 

Through the Girsanov formulae (13) and (14) the weak solution of the stochastic 
equations can be reduced to the convergence problem of the expansion (16) and the 
study of the properties of the resulting perturbation series in A. 

First if P and Q are of such a form that W (respectively 6) correlations are 
continuous functions (corresponding to the case that the LHS of (23) and (24) decays 
faster than the RHS) then the series (16) converges due to the estimate ( V ) = n !  
(because the time-ordered integral of 2n variables gives (2d- I ) .  

Moreover if the covariances (vLpt)) and (&&) decay exponentially in time then 
the limit to+ - m can be taken term by term. We can conclude that the solutions of 
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the stochastic equations have the same decay properties as their first-order approxi- 
mations (in particular we get for the complete solutions the exponential decay of 
correlations in space and time if the first-order term has this property). 

We come finally to the borderline case of logarithmic singularity corresponding to 
the case where the LHS in (23) and (24) behaves exactly as the RHS, i.e. asp-d. This 
case is particularly interesting for the parabolic equation in d = 2 (in which case we can 
take P=l) .  

The limit to-+ --m defines a stationary measure which is of the heuristic form 

where V is a local function 

V(p,)=;p,(-A)p, + A  cos ap, 

For the locality the choice P= 1 is crucial. For d=2,  a2<4n this can be given a 
meaning as a free field measure perturbed by a trigonometric interaction see [13-15]. 
The locality ensures the Markov property of pL0 [15]. 

Stochastic dynamics leading to the invariant measure of the Markov form (25) has 
been studied rigorously in [16-191 but mainly for polynomial and exponential 
interactions. The cos ap, case describes the equilibrium classical mechanics of a Bose 
gas of charged particles. The process p,, could be associated with a non-equilibrium 
state of a boson gas [20]. 

In order to make sense out of sin ay, we need to normal order it, i.e. 

sin a@+(sin aq$' sin ay*-: sin ayr: 

This corresponds to the renormalization of the coupling constant 

>+&in av)-' 

After the renormalization the nth-order term in the expansion in powers of I of (17) 
for the two-point function reads (we write the formula for the parabolic case with 
P= 1) 

=(:sin a@&,):: sin a&(x2): 
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In order to get rid of the stochastic integrals in (26) we may use repeatedly the 
integration by parts formula (familiar from quantum field theory [Zl-231, and 
Malliavin calculus) 

Denote 

then, computing the expectation values in (26) we get 

( 2  correspond to equal resp. opposite charges in the above-mentioned Bose gas 
interpretation). Assuming that the siogularities of (@e) are only logarithmic, i.e. 

(@t(x)@,,,.(x'))=s(t,x;f,x')+r(t,x;t',x') (28) 

s ( t , x ;  r ' , x ' ) =  -c1 Inlx-x'l -czlnlt-t'I =s,(t, t ' )  + s , ( x , x ' )  (29) 

where 

and r is a continuous function (such a behaviour is a consequence of the conditions 
(23) and (24); we return to this point in a subsequent publication) we can bound the 
integral (27) by an integral of a continuous function and the integral corresponding to 

(v,(x)vt.(x'))=s(t, x ;  t ' , O  (30) 
Then, we can again separate the integral (27) into a first one corresponding to s, and a 
second one corresponding to s2. Such integrals correspond to those one encounters in 
the study of a charged Bose gas. It has been shown in [24] that the nth-order integral is 
bounded by (n/2)!""~ca'~'~-nn"'2 for n+ m . There is the (n!)-'-factor coming from the 
time ordering. We need still to estimate the number of terms of the,form (27). This 
number comes from the integration over W i n  (26). For a Gaussian integral we have 

(I W1")- (n/2)!nn" a s n - t m .  

So, we can conclude that for a and 1 small enough the series is convergent. 
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